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ABSTRACT

The area of higher mathematics begins with successive courses in calculus;
however, rarely does the calculus student recognize the applications or impetus for the
mathematical skills that are taught. Giordano and Weir produced 4 First Course in
Mathematical Modeling, the first text which addressed this shortcoming in the curriculum
of every science and engineering field. With the advent of powerful classroom computers,
Fox, Maddox, Giordano and Weir produced Mathematical Modeling With Minitab, which
assists the student in translating the theory into a computer language. At the Naval
Postgraduate School, Maple is the software used most commonly in the Mathematics
Department, requiring a similar instructing tool. Mathematical Modeling Using Maple
follows the lead of Mathematical Modeling With Mz:nitéb, and assists the student in
grasping the concepts of the modeling class without getting slowed down by the syntax of

Maple.
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1. AN INTRODUCTION TO MAPLE

A. BACKGROUND

Experimental mathematical modeling, a natural stepping stone to statistical
analysis, has an obvious coupling with computers, which can quickly solve equations, and
plot and display data to assist in model test and evaluation. The sofiware computer
algebra system, Maple, is a powerful tool to assist in this process. When dealing with real
world problems, data requirements can be immense. When evaluating immigration
trends, for example, and the political, social and economic effects of these trends,
thousands of data points are used; in some cases, millions of data points. Such problems
cannot be analyzed by hand, effectively or efficiently. The manipulation required to plot,
curve fit, and statistically analyze with goodness of fit techniques, cannot feasibly be done
without the assistance of a computer software system.

Maple is designed to service two main calls for software service; namely, DOS
and Mjcrosoﬁ Windows users. As a result of the different formats, there are many subtle
and many obvious differences between the two systems, and occasionally there are
differences in the Maple commands and output from one system to the other. This
manuscript is intended to assist with the Microsoft Windows version of Maple, which is
identical to the system found on NPS Sun systems. Thjé manuscript is also suitable as a
reference source for the DOS user; although there may be small differences in the coding
syntax. The Windows version of Maple allows the user to create documents by combining

input, output, graphics and text.



The Maple system is easy to learn and can be applied in many mathematical
applications. While these demonstrate its versatility, Maple is also an extremely powerful
software package. Maple provides over 2500 built-in mathematical functions, covering
every mathematical interest: calculus, differential equations, linear algebra, statistics, and
group theory to mention only a few. The statistical package reduces many standard time-
consuming statistical questions into one step solutions, including mean, median, percentile,
kurtosis, moments, variance, standard deviation, and so forth. There are many references
for Maple, and a short list would include:

Maple Quick Reference

Maple Flight Manual

Maple Language Reference Manual
Maple Library Reference Manual

Maple Release 3 Release Notes
Maple Release 3 Getting Started

B. THE STRUCTURE OF MAPLE

Maple is an example of a Computer Algebra System (CAS). It is composed of
thousands of commands, to egecute operations in algebra, calculus, differential equations,
discrete mathematics, geometry, linear algebra, numerical analysis, linear programming,
statistics, and graphing. It has been logically designed to minimize storage allocation,
while remaining user friendly. Maple allows a user to solve and evaluate complicated
equations and calculations, analytically or numerically, such as optimization problems,
least square solutions to equations, and solving equations that involve Gamma functions,

and other special functions.




C. NOTATION AND CONVENTIONS
Throughout this ma.nuséript, different type fonts and styles are used to distinguish
between Maple commands, Maple output, and other information. Jfalics are used to

indicate Maple commands and the output will immediately follow the Maple commands.
In the first example in Table 1, the variable a has been assigned the value 2x° + 'g‘x.
Notice that the symbol := is used to indicate this assignment. In the second example, the

5 . .. . .
value of a, or 2x* + §x, is differentiated with respect to x.

a:=2%:"3 + 5*/6; 2= 2+ ox
diff(a,x); o2+ &

Table 1. Maple Command Examples.

This chapter will assist in the description of the user interface features of Maple. A brief
review of standard Window’s terms will be conducted prior to a description of the Maple
software. “Clicking” refefs to a single click of the button on the computer mouse when
the rﬁouse is located on top of the item of interest on the computer screen. A double-

click is simply clicking twice very quickly on top of the item of interest.

D. A GENERAL INTRODUCTION TO MAPLE
Maple has five types of windows: the worksheet window, help window, 2-D
window, 3-D window, and the animation window. In this manuscript, the worksheet, help

and 2-D windows are used most often.




The worksheet is whére all interaction between Maple and the user occurs. Within
a worksheet, commands (input) and text (remarks for clarification) are entered by the user,
and results numerical or symbolic (output and graphics) are produced. The user may
manipulate these interactions to create a flowing document, which can be saved by click
File, then click SaveAs followed by naming the document. The name of the document can
be any word or group of letters and/or numbers which has a length of less than nine
characters. Once a document has initially been saved, it can be retrieved by clicking File,
clicking Open, and entering the document name. Then it can be re-saved after
modification by clicking File, followed by clicking Save.

The input and text regions of the worksheet can be modified to change a
document, but the graphic and output regions cannot be modified once Maple inserts them
into a document. The input region is identified by the > prompt which proceeds all
command entries into Maple. (Note: Maple only recognizes the Maple generated >
prompt. If the symbol > itself is typed by the user, Maple does n&t respond to it as an
input prompt, but as the “greater than” relation.) The input commands, output characters
and text regions are all of different font sizé and color to assist the user in distinguishing
between them. Text regions assist in documentation and explanation of the input/output
regions of the document and they may be placed anywhere in a document. Graphic
regions, once they are generatéd by input commands, can be copied and pasted into a

worksheet. Once the graphic is pasted into the worksheet, it can no longer be edited or




manipulated. The output regions are generated by the user's input commands and cannot
be manipulated once they appear in a document, although the user is allowed to delete
these results.

The Maple menu bar is located at the top of the screen, immediately below the
Maple title. The menu bar provides easy access and collocation of many commonly used
options. The menu bar is composed of File, Edit, View, Insert, Format, Options, Window
and Help, much like any Windows software menu. Immediately below the Maple menu
bar is the Maple tool bar. The tool bar provides accelerated access to the most commonly
used options.

Maple syntax requires either a colon or a semicolon following every statement.
Maple will not process any command without either a colon or a semicolon. Multiple
statements may be on the same line, but each must have its own colon or semicolon. The
colon suppresses output of the command, while the semicolon signals that the results are
to be printed to the screen immediately after the enter key for the command is pressed.
There is a large set of commands either readily available in Maple memory or stored
separately in Maple packages, which assist in more efficient memory storage. Standard
commands such as addition and multiplication, are not contained in packages. When using
commands stored in packages (such as graph plotting commands), the command
with( package name ): is issued prior to using any of the commands in that package. This
command is required only once. A few of the Maple packages will be used in this
manuscript. Specifically, plot, will be used for all plotting commands, /inalg, for all linear

algebra commands, and stats, for all linear regression commands.




1. The Help Command

The Maple help database can provide all information found in the Maple Library
Reference Manual. However, help can be obtained immediately to assist the user in
solving problems without leaving the document. Help can be acquired by a number of
methods: click on Help in the menu bar, type help at the > prompt, or type ? at the >
prompt. By using the ? or help at the > prompt, the user must type the keyword for the
help search. If a specific syntax command is in question, (for example, the user desires to
learn Maple’s syntax for differentiation) the user need only type ?differentiate at the >
prompt. This procedure is perhaps the most convenient one for help on syntax. The Help

on the menu bar gives the user more options.

2. Data Entry

Commonly, a set of data will describe a process. Entering the data is the first step
to analyzing the data. Maple provides a convenient method for manually entering data via
alist. Alistis a group of data to which Maple’s many operations are applied. Suppose a
group of five college students’ ages are known; 18, 20, 25, 19, 19. Table 2 demonstrates

the command required to enter the data into Maple.

ages:=[18,20,25,19,19], ages:=[18,20,25,19,19]

Table 2. Entering A Data List.




The use of brackets in the command indicates a list. The brackets will maintain an
initial ordering of the data and allows for duplicate values, and may be manipulated by the
methods described in Section D.3.a of this chapter. Commas are required between
elements, neither blanks, nor periods, nor any other separators may be substituted. Any
alphanumeric may be included in a list, to include integers and rational numbers. If any
data should be missing, a place holder can be entered in its place, such as the letter x. If
there was a sixth student in the group but the age was unknown, the symbol x could be

used to represent the sixth student’s age. Table 3 presents the required command.

ages:=[18,20,25,19,19,x]; ages:=[18,20,25,19,19,x]

Table 3. Entering Data With A Missing Data Point.

a Recovering Data From A File

Typically, data collection is done by an outside agency and the analyst
analyzés the data that has been collected. When a survey is conducted on the state or
national level, the number of data points is typically in the thousands; which would lead to
tremendous time loss if manual input was requiredv. To alleviate this problem, Maple has
two separate commands to recover data from a file, importdata and readdata.

. Importdata is part of Maple’s statistical package and requires the

'with(stats): command. To use importdata, the file name and the number of columns or

data sets are reduired, the default is one data set. Missing data in the file will be




converted to the keyword “missing.” Given a data file, named “datal,” which contains
two sets of data {2,4,6} and {3,5} with the third element in the second set missing. Table

4 presents the Maple command and output.

I newdata:=[2.0, 4.0, 6.0], [3.0, 5.0, ‘missing’]

Table 4. Reading Data From A File Using Imj)ortdata.

Readdata is a more flexible command. The file name, number of columns
and type of data are required to use the command. The type of data indicates either
integer or float, with float being the default. Readdata requires a separate command prior
to use, (similar to the with( ): éommand); the command is readlib(readdata): which is
required only once. An example of this command follows, given a data file named “data”
containing 12 data points in three columns. Table 5 presents four separate commands
which describe the possible manipulation of the data file using ;che readdata command.
The file “data2” is composed of three columns of data, each including four data points,

described in the three sets: {1,1 1,15,17}, {3,22,5,78}, and {5,55,55,70}.

readdata(data?2, 3); _ read 3 columns of floats from the file 'data
readdata(data?2,integer, 3), read 3 columns of integers
readdata(data?2,integer); read first column of integers
readdata(data2); read first column of floats

Table 5. Reading Data From A File Using Readdata.




b. Data Entry And Verification

Figure 1 illustrates entering, verifying and naming data pertaining to the
length and weight of bass caught during a fishing derby. In Chapter II, several models for
predicting the weight of a bass as a function of some readily measurable dimension are
suggested. In Figure 1 the data is entered in columns, the columns are named, and the

data is printed to verify correct entry.

len:=[14.5,12.5,17.25,14.5,12.625,17.75,14.125,12. 625]:
wi:=[27,17,41,26,17,49,23,16]:
bass:=array(1..2,1..8, [len,wt]);

, __[14.5 125 1725 145 12625 1775 14125 12625
=l 17 41 2% 17 49 23 16

If titles for columns are desired:

len:=[length,14.5,12.5,17.25,14.5,12.625,17.75,14.125,12.625 /:
wt:=[weight,27,17,41,26,17,49,23,16] :
bass:=array(1..2,1..9,[lenwt]);

, _[Iengz.k 145 125 1725 145 12625 1775 14.125 12.625]
5" |weight 27 17 41 26 17 49 23 16

Figure 1. Data Entry And Verification.

c. Correcting Erroneous Entries

In the above illustrations, Maple displayed the bass data immediately after
its input. This is done to help the user verify that all elements have been entered correcﬂy.
Reentry of each command is typically the best method for correcting an erroneous entry

with many errors. However, there are other commands to expedite smaller scale




error correction, including the use of the following commands: op and subsop. This
section demonstrates that by using these two commands on a defined data set, data can be
inserted, deleted and replaced with ease. Once the data set has been entered, a data point
may have been left out or forgotten. Appending an element to the wr data set from Figure
1 is done by the command, fop(w?), X], where X is the new element.

Used in a slightly different fashion, op can also select a portion of the data
set. This is done by, op(j..k, wt), where wt is the data set and j and k are row values in
the data set, and j <k. As a result, the command selects a range from the wr data set.

Table 6 presents two methods of selecting this range.

newweight:= op(2..5,wt);
- newweight:= wtf2..5]; newweight:=[ 17, 41, 26, 17 ]

Table 6. Selecting A Rangé From A Data Set.

Subsop has two main purposes; to replace a data point with a new value
and to delete an element from a data set. Table 7 demonstrates an example of each, using

the wr data set.

newwt:=[27, 15, 41, 26, 17, 49, 23, 16]
newwt:=[ 27, 17, 41, 26, 17, 49, 16]

4-15,wt),
" newwt: =subsop(7=NULL,wt);

Table 7. Replacing Data In A Data Set.

10




3. Transformations And Functions

As described in Section C of this chapter, the symbol := is used to assign the value
on the right hand side of the statement to the name on the left hand side of the statement.
An example, x:=3; assigns the value 3 to x, to unassign x, use the command x:= ‘x’.
Functions can be defined using the mapping arrow symbol —. The function can be

evaluated numerically or symbolically, Table 8 provides a short example.

fr=x->x"2+2;
J0); 27
Se-1); (x-1)>+2

Table 8. The Mapping Coﬁmmd.

A mathematical model suggests an existing relationship among the selected
variables. In the two dimensional case, the model suggests a functional relationship
between a dependent and an independent variable. Given values of an independent
variable, a function can transform the given data to yield predicted values for the
dependent variable. Transforming data requires the understanding of algebraic operations

and functions that are used in Maple. Table 9 presents the regular algebraic operations

that Maple recognizes.

ition
- Subtraction
* Multiplication
/ Division
A Exponents

Table 9. Maple Algebraic Functions.

11




Many other functions are also recognized by Maple. Table 10 is an abbreviated listing.

abs absolute value of real or complex argument
argument argument of a complex number

ceil(x) smallest integer > x

conjugate conjugate of a complex number

exp the exponential function: exp(x) = sum(x"i/i!,i=0..00)
Jactorial the factorial function, factorial(n) = n!

Jfloor floor(x) = greatest integer < x

In natural logarithm (with base E =2.718...)

log logarithm to arbitrary base

logl10 log to the base 10

max, min maximum/minimum of a list of real values

RootOf function for expressing roots of algebraic expressions

Table 10. Other Maple Functions.

Some other functions that are available will be discussed in the next chapter
when considering statistical operations that may be performed on columns of data: sums,

mean, standard deviation, and so forth. Table 11 presents a few examples of data

transformation, with the correlating Maple commands.

o o2
2% +2 55 +9 2%cN2 + 2.5% + 9
(x2+2)0.5 (™2 + 2)M(3)

Table 11. Examples Of Maple Commands.

12




a. Column Operations
- In this section, the operations that can be performed directly on worksheet
columns are presented. Among the available operations are: matadd, evalm, and
scalarmul. These operations all require the with(linalg): command prior to use. Table
12 demonstrates these commands with six examples using two columns of data;

cl:=[1,2,3] and c2:=[4,5,6].

Summ?ng Columns: c1 + ¢2 ¢3:=matadd(cl,c2,1,1); 1c3 =[5 7 9" 1

Summing a Constant Into a c4:= evalm(3+c2); c4:=[7 8 9]

Column

Multiplying a Constant Into a | ¢5:= scalarmul(cl, 3); c¢5=[3 6 9]

Column

Adding Multiples of Columns | c6:=matadd(ci,c2,4,2); c6:=[ 12 18 24]

Using a Function on a Column | ¢7:=map(x->In(x),cl): ‘ :
evalf(“); c¢7:=[ 0 .693 1.099]

Taking Each Value in a c8:=map(x->x"2,cl); - c8=[14 9]

Column to a Power

- Table 12. Column Operations.

4. Arrays and Matrices

Arrays and matrices are structured devices used to store and manipulate data. An
array is a specialization of a table; a matrix is a two dimensional array. Both array and
matrix are part of the linear algebra package, and require the with(linalg): command prior

to use. Table 13 presents a few examples of the use of the array and matrix commands.

13




with(linalg):

a:=array([1,2,2,3]); a=[1223]
b:=array([[1,2],[3,5]]); 1 2]
b= 3 s

c:=array(1..5,[9,3,1,8,3]); A c=[93183]
d:=matrix({[7,3],(2,3]]); |

7 3
_2 3_1

Table 13. Array And Matrix Commands.

To observe multiple columns of data in a chart an array or matrix command may be used.

Table 14 presents an example with output.

no output
with(linalg): no output
achart:=matrix(4,2,[a]);
achart =

27
64

HW N -

Table 14. Charts Using Matrices.

5. Saving And Printing A Worksheet

To start Maple from Windows, enter Maple by double-clicking on the Maple icon.
- Once Maple has been started, it will automatically open an empty worksheet, with a
flashing cursor to the right of a character prompt >. To save the worksheet, click on File

and then click on SaveAs and then specify a name for the worksheet. Once the worksheet

14




has been named and saved, click on File and thén click on Save to re-save the worksheet.
To open a previously saved worksheet, click on File and then click on Open, and then
specify the name of the worksheet.

After re-opening a document, the document will contain only the commands and
not have the initial results. | This is because of Maple's kernel, or internal state. After a
command is executed, the result is stored in memory (the kernel). If the document is
closed and then reopened, Maple recovers the commands but does not recall the results,
unless the kernel itself is saved. Saving the kernel is done by selecting “Save Kernel
State” under the Options menu followed by saving the document. This saves some time if
you are reusing the samel document time and time again; however, it does take up a lot of
memory in the computer.

After the completion of a document, involving commiands and results, the
document can be printed by clicking File, clicking Print (which calls up a print window),
and then clicking again on print.

To exit Maple click on File and th¢n click on Exit, or type quit, done, or stop at
the Maple prompt. Note: there is no opportunity to save your worksheet using one of
these latter three commands, but saving your worksheet file is automatic by simply

clicking on Exit.

15
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II. GRAPHING MODELS

A. GRAPHICAL OVERVIEW

In the mathematical modeling process, it is often desirable to
graph a model in order to gain a qualitative feel for interpreting the
model, or perhaps to use the graph for making predictions. In another
situation you may wish to test a proposed model against some observed
data. It is helpful, in such cases, to plot the observed data and overlay
the data scatterplot on the graph of the model. (Fox, et al.,
Mathematical Modeling With Minitab, page 5)

By evaluating a graph, many interesting properties can be determined, including
detecting local maxima and minima. In this chapter, an in depth review of the Maple
commands required to accomplish these tasks is presented.

Maple has an extremely detailed and developed plot command, which provides
plots in both two and three dimensions. For these modeling purposes, 2-D plots will
typically be used. The plot function is called by plot(f, hr, vr, options), where fis the
function to be plotted, A is the horizontal range and vr is the vertical range. Additionally,
many other calls can be added after the vertical range to control a variety of options.

Table 15 presents a short list of these options (defaults are in bold font).

constrained or unconstrained

scaling =
style = point, line, patch or patchnogrid

title = “title’ no title

thickness = 0,1,2,0r3

axes = framed, boxed, normal or none

view = [xmin..xmax, ymin..ymax], entire curve

Table 15. Plot Command Options.

17




1. Continuous Plots

The plot commaﬁd, plot(#); will generate a 2-D plot of f with a default range of
-10..10 on the x-axis. No other command information is required; however, the axes
ranges and options may be speciﬁed to generate a specific plot. The default range can be
specified as a finite range or an infinite range. By constraining the scale, equal units occur
in both the x and the y direction. However, a plot is generally easier to see when the scale
is unconstrained, although it would be distorted (e.g., a circle would appear as an ellipse.)
Maple automatically scales the axes to spread the data over as large a space as possible,
but this procedure does not imply that the area of interest will be plotted most effectively.
As a result, the view option must be employed to ensure that the correct portion of the
plot is best displayed. To demonstrate the plot command with a variety of options, a few

examples are provided in Figures 2, 3 and 4. Note the distortion in both Figures 2 and 3.

plot(sin,style=point);

Figure 2. A Sine Plot With The Default Range.
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plot(sin(x),x=0...infinity,scaling = unconstrained, axes= boxed);

infinity

Figure 3. A Sine Plot With An Infinite Range.

Dplot(sin(x),x=0..2*Pi,scaling=constrained);

Figure 4. A Sine Plot With A Constrained Scale.
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2. Scatterplots

The previous plots demonstrate functions with continuous x values; either
defaulted to -10..10 or selected by the user. However, Maple can also plot discontinuous
sets of data. Using the data in Table 16, Figure 5 presents an example of plotting the

ages of five people versus their respective weights.

Age (years) 1 5 13 17 24
Weight (1bs.) 15 40 90 160 180

Table 16. Age-Weight Data.

age:=[1,5,13,17,24]:
wt:=[15,40,90,160,180]:
agewt:={seq([age[i]wtfi]],i=1..5)}:
plot(agewt,style=point, symbol =diamond);

8 10 12 14 16 18 20 22 24

Figure 5. Age vs. Weight Data Plot.
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3. Multiple Plots

It is also an option to piot multiple functions on one set of axes. One method
requires that both functions have the same domain, presented in Figure 6. The second
method uses the display command which requires the with(plots): command be called

once. This method does not restrict the domains, as presented in Figure 7.

plot({sin(x),x\(.5)}, x=0..5, scaling = constrained, axes = frame);

Figure 6. Multiple Functions On One Plot.

with(plots):
plotl:=plot(agewt,style=point, symbol =diamond):
plot2:=plot(30*sin(x), x=0..30):
display({plotl,plot2});
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Figure 7. Multiple Functions On One Plot With Different Domains.

B. AN ILLUSTRATIVE EXAMPLE: MINIMIZING THE COST OF
DELIVERY AND STORAGE

In this example, the graphing commands previously presénted are used in a real
world situation, minimizing the cost of gasoline. By graphically analyzing the amount of
gasoline and interval of delivery of the gésoline, a service station can eliminate
unnecessary costs, and sell the gasoline at a price which will capture a larger portion of the
market. The two main costs for the service station are delivery costs and storage costs.
The delivery cost is a charge per delivery which is independent of the amount of gasoline

delivered. From Giordano and Weir, A First Course In Mathematical Modeling , page

srt

136, the following model represents the average daily cost of gasoline: ¢ = P + X

Table 17 defines the variables used in this example.
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c average daily cost

d delivery cost in dollars per delivery

~

time in days between deliveries
storage cost per gallon per day

e T

demand rate in gallons per day

Table 17. The Variables Of The Delivery And Storage Example.

As previously stated a service station wishes to minimize the average daily cost, c. From
the above equation, this can be done by minimizing d, s, 7, and . The first summand of
the model describes the effect of the delivery cost on the average daily cost, while the
second summand describes the effect of the storage cost on the average daily cost. By
plotting each summand separately as ¢ changes, the model can be more completely
understood. In this example, the storage cost, delivery cost and demand rate are known
and are s=0.1, d =800 and » = 1000. Table 18 pfesents the Maple commands required

to transform the submodels (Fox, et al., op. cit. , page 21).

s:=0.1; s =0.1

d:=800; d =800
r:=1000; r := 1000
delivery:= d/t; delivery = 800/t
storage := s*r¥t/2; storage :=50.0t

daily := delivery + storage; daily := 800/t + 50.0t

Table 18. The Transformation Commands.

23




Now that the functions are ready to be plotted, a range must be specified. Having
no feel for the models, the ﬁrsf plot will enter a range, which will be evaluated and
changed accordingly to ensure the range for the next plot is more accurate for this model.
After each plot, this process is repeated until the range is satisfactory for accurate analysis.
Table 19 presents the commands to evaluate the range of each plot. Figures 8, 9

and 10 disl;lay the result of each command.

plot(delivery, t= 0..100);
plot(storage, t=0..20);
plot(daily, 1=0..50);

Table 19. The Plot Commands.

This range does not concentrate on the area of interest.

All the information can be fpund from 0..20 on the x axis.

Figure 8. The Delivery Plot With An Initial Range Estimate.
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This range brackets the function well; however, from
the last function, the y values may suggest
using a slightly larger range scale

Figure 9. The Storage Plot With A Second Range Estimate.

Figure 10. The Daily Plot With An Acceptable Range.
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Using the range 0..50, all three functions can then be presented on a single graph
for quicker analysis of the effects of the individual variables on the daily cost. Figure 11
presents this combined plot, using the following commands:

plot({delivery, storage, daily}, t= 0..50, axes = boxed);

Figure 11. The Combined Plot Of The Daily, Delivery, And Storage Costs.

Immediately, it is noted that before day two, nearly all of the cost is derived from the
delivery cost; while after day two, nearly all the cost is derived from the storage cost. This

is the critical point, the time between orders that minimizes the average daily cost.
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OI. MODELING USING PROPORTIONALITY

The simplest method of constructing a model is by applying proportionality

arguments to a set of data. By plotting a data set, an initial estimation of a

proportionality constant can be acquired directly from the graph. The procedure for

determining a proportionality constant for a model is presented in Table 20.

N o=

Rl

Enter the data observed for the dependent and independent variables.
Plot the raw data points to check for trends and to identify potential data
outliers.

Perform the transformations supporting a hypothesized proportionality.

Plot the transformed data to test the hypothesized proportionality.
Estimate the constant of proportionality.

Table 20. Procedure To Estimate Proportionality.

This chapter demonstrates the Maple commands necessary to perform this method

of model construction. Section A presents the graphical plotting methods to check the

proposed proportionality and the commands for estimating the constants of

proportionality. In Section B, several modeling applications are investigated using

proportionality. (Fox, et al., op.cit., page 24)

A.

TESTING PROPORTIONALITY ARGUMENTS

Two positive quantities x and y are said to be proportional (to
one another) if one quantity is a constant positive multiple of the other;
that is, if y = kx, for some positive constant k. We write y o« x in that
situation, and say that y ‘is proportional to’ x. (Giordano and Weir,

op.cit., page 50)
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This description of proportionality graphically depicts a line through the origin.
Thus a quick test of a proportionality model is the plot of the data, which will approximate
a straight line projected through the origin. Other types of proportionality models involve
transformations, such as y o X or y ocInx. Maple can quickly transform the original
data, x, into many such functions, here x* and In X, as displayed in Table 12 in Chapter I.
A submodel involving a proportionality argument must approximate a line and it must pass
through the origin.

Once a proportionality argument has been successfully identified, the next step is
determining the slope of the line that “best” fits the data graphically. Initially a large plot
is advantageous to determine if the data approximates a line. Quite often this plot will not
include the origin, which necessitates a second plot to venify that the “best” line does pass
through the origin. Consequently two plots may be required to accurately plot the

transformed data. This procedure is illustrated by several examples.

1. Example 3.1.1: Testing A Proportionality Model

In Chaptt;,r 3 of Giordano and Weir, op.cit., a bass fishing derby was analyzed to
determine which fishing club member caught the most fish by weight. In this example, an
analyst wishes to test the model vol oc len>. Table 21 displays the data len and vol,

representing length and volume.

len | 0.6 1.0 2 4 7 20
vol | 0.1 0.7 6 100 | 210 | 4000

Table 21. The Length And Volume Data Points.
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Step 1 Table 22 presents the entry of the observed data and verification that the
input is correct.

len:=[0.6,1,2,4,7,20]; len=[ 6,1,2, 4, 7,20]

vol:=[0.1,0. 7,6,]00,210,4000],‘ vol:=[ .1,.7, 6, 100, 210, 4000 ]

lenvol:=array(1..2,1..6, [len,vol]); ; )= 5 1 2 4 7 20
enve "[1 7 6 100 210 4000]

Table 22. Step 1.

Step 2 Table 23 presents the commands to plot the data checking for trends
and identifying any potential outliers found in Figure 12.

datalv:={seq([len[i],volfi]],i=1..6)}:
lot(datalv, style=point, symbol=boxy); |

Table 23. Step 2.

Figure 12. Length vs. Volume.
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Step 3 From Figure 12, the data does not fall along a straight line, but it resembles
a plot of x> orx’. So try both transformations, to see if one of these
relationships exists. Table 24 presents the commands and outputs for the
transformations.

len2: =map(x->x72, len;:
len2vol:=array(1..2,1..6,[len2,vol]); lon3 I__W35 1 4 16 49 400
YIS 7 6 100 210 4000

len3:=map(x->x"3,len):

Ion3 j,__r.216 1 8 64 343 8000
Ien3vol:=army(1..2,1..6,[len3,vol]); enIvo '__ 1 7 6 100 210 4000

Table 24. Step 3.

Step 4a. Table 25 presents the commands required to plot the transformed data to
test for a straight line in the transformed data. The plots are presented in
Figures 13 and 14.

data2:={seq({len2[i] volfi]] i=1..6)}:
plot(data2, style=point, symbol=box);
data3:={seq([len3[i] volfi]],i=1..6)}:
plot(data3, style=point, symbol=circle);

Table 25. Steps 4a And 4b.

Step 4b. To evaluate if the data projects through the origin, a line is drawn through
the data points on the graph. Notice a line does not represent well the
len’ data, however, a line can be drawn through the len® data points.
Figures 15 and 16 are the same plots as Figures 13 and 14 with a line
drawn in by hand to support our conclusions.
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Figure 13. Length2 vs. Volume.

4000

Figure 14. Length3 vs. Volume.
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]

Transformed data are not
represented by a straight line.

Figure 15. Length2 vs. Volume.

Transformed data are
approximated by a line.

Figure 16. Length3 vs. Volume.
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Step 5 The proportionality constant. Use the line that was drawn in by hand onto
the graphs of the data in Step 4; then select two points (X1, y1) and (x5, y2)
on this line. The line segment between the two points approximates the
hand drawn “best” line (see Figure 16). The proportionality constant is the
slope of the line segment between the two chosen points, slope =

%2——% . Table 26 presents a solution for the slope using two points
2~ 1

from the “best” line drawn onto Figure 16.

slope:=evalf((4000-100)/(8000-64)); slope:= 4914314516

Table 26. The Constant Of Proportionality.

Qualitatively, the proposed model is observed to be reasonable, as shown in Figure 16.
Using the procedures discussed in Chapter II displayed in Table 27 , plotting the

original data set overlaid by the continuous model provides a visual analysis of the model,

located in F iéure 17. As can be observed, the model represents quite accurately the trend

of the original data.

wit, (plots):
plotl:=plot(slope*x"3,x=0..20): .

plo2:=plot(datalv, style=point, symbol=circle):

11 := textplot([8,3000, The model is plotted as the solid line. ] align=ABOVE):

12:= textplot([8,2500, The length/volume data points are the circles. ], align = ABOVE):
display({plotl plot2,t1,12});

Table 27. The Model Over The Original Data.
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SEIEID-:- The model is plotted as the solid line;

the length/volume data points are the circles.

Figure 17. Bass Derby Proportionality Model.
2. Example 3.1.2: Rejecting A Poor Model

- This sample demonstrates that the qualitative information ob-
tained from a Maple plot can be sufficient to reject a poor model. In the
following data set, p represents the population of fruit flies and # repre-
sents the time spent (in days) in incubation. The modeler suspects that
the population of flies is proportional to the time spent in incubation:

px<t. (Fox, et al., op.cit., page 42)

The data set is located in Table 28, while Table 29 presents the commands and outputs

reqﬁired for this analysis. Figure 18 is the resulting plot.

t 7 14 21 28 35 42
p 8 41 133 | 250 | 280 | 297

Table 28. The Time And Population Data Points.
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1:=[714,21,28,35,42].
p:=[8,41,133,250,280,297]:
p:=array(1..2,1.6,[t,p]); @:[? 14 21 28 35 42]
|8 41 133 250 280 297
datatp:={seq([t[i],p[i]],i=1..6)}:
Dlot(datatp,style=point,symbol=box);

Table 29. The Plot Commands.

Figure 18. A Poor Proportionality Model.

It is clear from the graph that the data is not accurately approximated by a line
through the origin. Therefore, the proportionality assumption is rejected. The modeling
process must begin again to determine other possible relationships between the variables

Chapter V will investigate and describe these other techniques.
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3. Example 3.1.3: Checking If A Line Projects Through The Origin
After gathering the data found in Table 30, an analyst hypothesizes that a model
w « In z accurately describes the data. Using the commands found in Table 31 Maple is

used to test the proportionality hypothesis. Figure 19 is the resulting plot (Fox, et al.,

op.cit., page 44).

z 8.1 22.1 | 60.1 ] 165
1 2 3 4

Table 30. Example 3.1.3.

2:= [8.1,22.1,60.1,165]:

w:=[123,4]:

zw:=array(1..2,1..4,[z,w]); zw_[&l 22.1 60.1 165]
11 2 3 4

Inz:=evalf(map(x->in(x),z)); nz =[2.09,3.10,4.10,5.11]

data:={seq({Inz[i] w[i]] i=1.4)}:
plot(data,style=point,symbol=circle);

Table 31. Example 3.1.3 Plot Commands.

Figure 19. Example 3.1.3: The Raw Data Plotted.
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From the graph it is observed that while the data does approximately lie along a
straight line, it is difficult to determine if the proportionality model is accurate without the
origin plotted on the graph. The command in Table 32 replots the data with a view
to include the origin. In Figure 20, a line approximating the data has been drawn through
the transformed data. It is obvious from Figuré 20 that the transformed data does lie
along a line, but it does not pass through the origin. Thus the proposed proportionality w

o In z is rejected.

plot(data,style=point,symbol=box,view=/[-1..6,-2..5])

Table 32. Investigating The Origin.

Figure 20. Example 3.1.3: Proportionality Rejected.
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B. EXAMPLES OF PROPORTIONALITY SUBMODELS

1. Example 3.2.1: The Bass Fishing Derby

Consider a sport fishing club that for conservation purposes
wishes to encourage its membership to release their fish immediately
after catching them. On the other hand, the club wishes to make awards
based on the total weight of fish that are caught. You might suggest
that each individual carry a small portable scale. However, portable
weight scales tend to be inconvenient and inaccurate, especially for
smaller fish. Thus we define our problem as follows: Predict the weight
of a fish in terms of some easily measurable dimensions. If we let #
represent the weight of a fish in ounces, Jen represent the length of a
fish in inches, and g its girth (circumference of the fish at its widest
points) in inches, we can suggest the following models: (Fox, et al.,

op.cit., page 47)
° W « len3
® W o g3

. W < g2 len
. W glen2

Table 33 displays the data sets that have been collected and will be used to test each of the

four models:

Length, len(in.) | 145 125 [ 1725 145 [ 12.625 [ 17.75 [ 14.125 ] 12.625
Girth, g(in.) |975[8375[ 11.0 [975]| 85 | 125 | 90 | 85
Weight, W(oz.) | 27 | 17 | 41 | 26 | 17 49 | 23 16

Table 33. The Bass Fishing Derby Data Points.

In this example, for Step 1, the bass data file used in Chapter I, Section D.2.b can be used,
requiring only the entry of the girth data. The procedure discussed in Section A will be
followed, illustrating a Maple solution analyzing the four suggested models. Once this

procedure is completed, a new question arises; which model fits the data best? In Chapter
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IV, a method of fitting models is demonstrated providing an analytical answer to the
question, which model is best. Figures 21 through 33 and Table 34 present the commands

and outputs for this analysis.

Step 1: Input the new data. Digits:=4: restricts the number of digits in any output to
four, and eliminates unnecessary digits, (Maple’s default is 10). Recall the data for length and
weight has previously been inputted so only girth must be entered.

Digits:=4:
g:=[9.75,8.375,11,9.75,8.5,12.5,9,8.5]:

Step 2: Check for trends and identify potential outliers. Define the points to plot, from
the bass array and execute the plot. In this case, a line through the origin is inserted to demonstrate
that it does not graphically approximate the data.

lenwt:={seq([lenfi] wt[i]],i=1.8)}:
plot(lenwt, style=point, symbol=box,view=[0..20,0..50]);

Figure 21. Example 3.2.1: The Bass Fishing Derby.

Figure 22. Length vs. Weight.
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Step 3:

[ 145
2103
3049
9.75
95.06
1 926.9

bass:=

above array.

145
975
bass:= | 1378
2050
|27

Again, the data appears to be similar to some power x* or x3, so a few

commands transform the data:

g2:=map(x->x"2,g):
g3:=map(x->x"3,g):
len2:=map(x->x"2,len):
len3:= map(x->x"3,len):
bass:=array(1..6,1..8,[len,len2,len3,g,g2, g3]);

125 1725
1563 2976
1953 5133
8.375 11
7014 121
5874 1331

Ig2:= [seq(g2[i]*lenfi] i=1..8)]:
gl2:= [seq(g[i]*len2fi],i=1..8)]:
bass:=array(1..5,1..8,[len g Ig2,gI2,wt]);

125 1725
8375 ‘11
8768 2087
1309 3274
17 41

145
2103
3049
9.75
95.06
9269

145
9.75
1378
2050
26

12.625
159.4
2012

85

72.25

6141

12.625
85
9125
1355

17

hypothesized proportionalities could be tested; specifically, V oc len’ , Ve g3 , Ve g2 len,
and Ve g len” as obtained by Giordano and Weir,

op.cit., page 57. The following

17.75
3151
5592
125
156.3
1953

17.75
125
2774
3939
49

14125
1995
2818

9
81
729

14.125
9
1145
1796
23

12.625]
1594
2012

8.5

7225

6141 |

12.625]
8.5
9125
1355

16 |

length
length™2
length"3

girth
girth"2
girth"3

The commands for the two transformations g2 lenand g len? require the data from the

length
girth
1g"2
gin2

weight

Figure 23. Example 3.2.1: The Bass Fishing Derby.
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Step 4: Plot the transformed data to test hypothesized transformations. The four plots will
mmmm@mmmﬂ££Mm@mﬁMWmeTmmemmmwMMm
to plot, from the bass array, followed by the plot commands. On each plot an “eye-balled best” line
has been drawn through the origin, to evaluate the proportionality of the transformations. This
“best” line is a visual estimation of the line which passes through the data. In the next chapter you
will learn how to obtain a more exact line. '

len3wt:={seq([len3fi]wtfi]]i=1.8)}:
plot(len3wt,style=point,symbol=cross, view=[0..6000,0..50]);

g3wt:={seq([g3[i]wtfi]] i=1.8)}:
plot(g3wt,style=point,symbol=diamond, view=[0..2000,0..50]);

Ig2wt:={seq([Ig2[i] wt[i]] i=1.8)}:
plot(Ig2wt,style=point, symbol=circle,view=/0..3000,0..50]);

gl2wt:={seq([gl2[i] wtfi]],i=1..8)}:

plot(gl2wi, style=point,symbol=diamond,view=[0..4000,0..50]);

Figure 24. Example 3.2.1: The Bass Fishing Derby.

1000 2000 3000 4000 5000

Figure 25. Weight vs. Length3.
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1500

Figure 26. Weight vs. Girth’.

500 1000 1500 2000 2500 3000

Figure 27. Weight vs. Length*Girth’.

42




2000 3000 4000

Figure 28. Weight vs. Girth*Length®.

Step S: The proportionality constant. Note: the estimates of proportionality will vary,
depending on the values chosen to determine the slope. Using the “best” line, pick two points
(X1, y1) and (x2, y2) on this “best” line. The line segment between the two points approximates the
hand drawn “best” line. Table 34 presents the commands and Figures 30 through 33 display the
output, identical to Figures 25 through 28 with the “best” lines inserted. In each of the four plots,
the “best” lines do approximate the data. .

Figure 29. Example 3.2.1: The Bass Fishing Derby.
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Digits:=3:
slope1:=(43-8.6)/(5000-1000): evalf(siopel);
slope2:=(42-14)/(1500-500): evalf(slope2);
slope3:=(45.5-8.5)/(2500-500): evalf{slope3);
slope4:=(50-12.5)/(4000-1000): evalf(siope4);
plot1:=plot(len3wt,style=point,symbol=cross):
plot2:=plot(slope I *x,x=0..6000):
display({plot1,plot2});
Dplot3:=plot(g3wt,style=point,symbol=diamond):
plot4:=plot(slope2*x,x=0..2000):
display({plot3,plot4});
plot5:=plot(Ig2wt,style=point,symbol=circle):
plot6:=plot(slope3*x,x=0..3000):
display({plot3,plot6});

Dplot7:=plot(gi2wt style=point,symbol=box):
plot8:=plot(slope4*x,x=0..4000):
display({plot7,plot8));

0.00860
0.0280
0.0185
0.0125

Table 34. Example 3.2.1: The Bass Fishing Derby.
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1000 2000 3000 4000 5000 6000

Figure 30. Weight vs. Length3‘

Figure 31. Weight vs. Girth’.
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500

1000 1500 2000

Figure 32. Weight vs. Length*Girthz.

2500

3000

2000

Figure 33. Weight vs. Gir‘ch*Lengthz.
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2. Example 3.2.2: Vehicular Braking Distance

A popular ‘Rule of Thumb’ often given to students in driver
education classes is the ‘Two Second Rule’ to prescribe a safe following
distance. The rule states that if you stay two seconds behind the car in
front, you have the correct distance no matter what your speed. Since the
amount of time is constant (two seconds), the rule suggests a propor-
tionality between stopping distance and speed, v. To test this rule we

~ pose the following problem: Predict a vehicle’s total stopping distance as
a function of its speed. In the development of this model (see Giordano
and Weir, op.cit., page 64), total stopping distance is calculated as the
sum of the reaction distance, dr, and the braking distance, d,. The
following submodels are hypothesized in that development: (Fox, et al.,

op.cit., page 52)
o dr < v
° dp < v

These submodels yield that the total stopping distance, d, is represented by an

equation of the formd = k; v+k; v*. These submodels are tested using the data set in

Table 35.
v | 201 25 30 35 40 45 50 55 60 65 70 | 75 | 80
d; 22 | 28 33 39 44 50 55 61 66 72 77 83 88
d, | 20 | 28 | 40.5 | 525 | 72 | 92.5 | 118 | 148.5 | 182 | 220.5 | 266 | 318 | 376
d |42 ] 56 ]| 735|915 116 1142511731 209.5] 248 | 292.5 | 343 1 401 | 464

Table 35. The Vehicular Braking Distance Data Points.

Each of the two submodels will be tested as demonstrated in Example 3.2.1.

The data must be entered and the hypothesized transformations applied. Afier plotting the

transformed data, calculating the slopes of the “best” lines on each graph will determine

the constants of proportionality. These steps are presented in Figures 34 through 40.
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Step 1: Input the new data.

v:=[20,25,30,35,40,45,50,55,60,65,70,75,80]:
dr:=[22,28,33,39,44,50,55,61,66,72,77,83,88]:
db:=[20,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]:
dist:=[42,56,73.5,91.5,116,142.5,173,209.5,248,292.5,343,401,464]:

v2:=map(x->x"2,v):

braking:=array(1..5,1..13, [v,dr,db,dist,v2]);

braking:= 20 25 30 35 40 45 50 55 60 65 70 75 80
22 28 33 39 4 5 55 61 66 72 77 8 88
20 28 405 525 72 925 118 1485 182 2205 266 318 376
42 56 735 915 116 1425 173 2095 248 2925 343 401 464
400 625 900 1225 1600 2025 2500 3025 3600 4225 4900 5625 6400

Step 2: Check for trends and identify potential outliers. Define the points to plot from
the braking array and plot these points. Three data sets are plotted on one graph,
demonstrating no outliers and a non-linear relationship between v and d and between v and dp.

vd:={seq([v[i] dist[i]],i=1..13)}:

vdr:= {seq([v[i]dr[i]]i=1.13)}:

vdb:= {seq([v[i],db[i]],i=1..13)}:

plotvd:=plot(vd, style=point, symbol=diamond) :
plotvdr:=plot(vdr,style=point,symbol=circle):

plotvdb: =plot(vdb, style=point,symbol=cross):

t1:=textplot([5,400,v vs d plotted with diamonds. ‘], align =RIGHT):
12:=textplot(/5,360,'v vs dr plotted with circles. '], align =RIGHT):
13:=texiplot({5,320,v vs db plotted with crosses. ], align =RIGHT):
with(plots):

display({plotvd plotvdr,plotvdb,t1,12,13});

Figure 34. Vehicular Braking Distance.
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:-v vs d plotied with diamonds.
1v vs dr plotted with circles.

E_v vs db plotted with crosses.

Figure 35. Trends And Outliers Plot.

Step 3: From Figure 35, the reaction distance does appear to be proportional to velocity, and
braking distance could be proportional to velocity squared, which supports the derived submodels.

The command for this step is found in Step 1, v* is in the last line of the braking array.

Step 4: Plot the transformed data to evaluate the submodels. The reaction and braking
distances are plotted in Figures 37 and 38. Again, a “best” line has been added to each graph to
evaluate the proportionality of the transformations.

plot(vdr,style=point,symbol=circle);

datav2db:={seq([v2[i],db[i]],i=1..13)}:
plot(datav2db, style=point, symbol=box,view=[0..6500,0..400]);

Figure 36. Vehicular Braking Distance.
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Figure 37. Velocity vs. Reaction Distance.

ju]
=}

1000 2000 3000 4000 £000

Figure 38. Velocity2 vs. Braking Distance.
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Step S: Estimate the constants of proportionality. The procedure for selecting the
points is identical to the bass fishing derby, select values on the “best” line to calculate the
slopes. To evaluate the constants of proportionality, analyze the plots in Figures 37

and 38.

slopel:=(88-22)/(80-20); = 1.1
slope2:=(342-57)/(6000-1000); = 0.057
plotcontx: =plot(slope 1 *x+slope2*x2,x=0..80):

t1:=texiplot([5,400, The data is plotted with diamonds. '], align =RIGHT):
12:=texiplot([5,360, The model is the solid line. ] align =RIGHT):
display({plotvd plotcontx,t1,t2});

Figure 39. Vehicular Braking Distance.

The data is plotted with diamonds.
The model is the solid line.

Figure 40. Transformation With Proportionality.

Using the procedure from Section A, and verifying the result graphically in

Figure 40, the following model is determined and assessed to be an accurate

approximation of the vehicular stopping distance data: d = 1.1v + 0.057 V.
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IV. MODEL FITTING

Chapter III demonstrated Maple’s capability to perform various transformations on
a data set and to plot the resulting transformed data to assist in detefmining a proposed
proportionality model graphically. In particular, methods to enter data, transform data,
obtain a scatterplot, test a proportionality relationship, and estimate the parameters of a
model were discussed. This chapter describes how to determine the parameters of a
model analytically, according to some criterion of “best fit,” and to test the adequacy of
the model.

Suppose it is proposed that a parabolic model might best explain a behavior being

studied, and you are interested in selecting that member of the family y = Ax® which best

fits the given set of data. Using Maple, y versus x* can be plotted and a graphical

estimate the slope of the “best” line can be determined, as demc;nstrated in Chapter III
This chapter will focus on an analytical method to arrive at an accurate model for a

given data set. Again from the family y = sz, A can be determined analytically by using a

curve-fitting criterion, such as least-squares or Chebyshev, and solving the resulting
optimization problem (see Chapter 4, Giordano and Weir, op. cit., for a discussion of
model fitting). This chapter presents Maple commands which solve the least-squares

optimization problem with analysis of the “goodness of the fit” of the resulting model.

(Fox, et al., op.cit., page 66).
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A. LEAST-SQUARES CURVE FITTING

The method of least-squares curve fitting is simply the solution to a model such
that the sum of the squares of the deviations between the observations and predictions is
minimized. In Maple, the fif command in the statistical package fits a model curve to a

set of data points using the least-squares criterion. Given the set of data points

{(i,Y;): = 1,2,..., m}, the least-squares method will minimize
m 2
S= z [yj - f(xj)] Equation 1.
j=1

For example, to fit the model y = Ax? to a set of data, the least-squares criterion requires

the minimization of Equation 2. Note in Equation 2, A is estimated by a.

5
2
2
S = Z [yj - axj] Equation 2.

Jj=1

Minimizing Equation 2 is achieved using the first derivative.

&8

=-2 z ij (yj- an2) = 0. Solving for a: a=(z ijyj) / (Z Xj4 ).

Given the data set in Table 36, a numerical solution can be determined.

x 05 ] 10 | 15 ] 20 [ 25
y | 07 | 34 | 72 [ 124 | 201

Table 36. Least-Squares Data Points.

Solving fora:a=(>. xy;j) / (X %' )= (195.0)/(61.1875) = 3.1869

and the model y = Ax? becomes y =3.1869 x* (Fox, et al., op.cit., pages 66 and 67).
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In Maple the fit command fits the model type Y =b+ b1X; + byXp + ... + bXi
to the data set given in the k specified columns. To fit the quadratic model
y=Ap+ Aix+ Azx2 to a data set of x values, xv, and of y values, yv, (Fox, et al., op.cit.,

page 68), the Maple fit command required to solve this example is
quadraticfit:=fit[leastsquare[[x,y], y = a*x"2 + b*x + ¢, {a,b,c}]] ([xv,yv]);

where x and y are command calls which will use the two data sets named in the command
(in this case xv and yv), while a, b and c are the coefficient variables for which a least-
squares solution will be fit. Since fit is part of the statistics package, the with(stats) .;
command must be entered once prior to using the fif command. Table 37 and Figure 41

illustrate the procedure.

with(stats) :with(plots):Digits:=5:

xv:=[.51,1.52,2.5]; xv=[.5115225]
yv:=[.7,3.4,7.2,12.4,20.1]; yv=[.7,3.4,72, 12.4,20.1]
xyfit:=fit[leastsquare[[x,y],y=a*x"2+b*c+ xyfit = y = 3.2481 x* -.1839 x +.1036

c.{a,b,cl] [([xv.yvi);
f:=unapply(rhs(xyfit) x); fi=x— 3.2481 x” - .1839 x +.1036
xy:={seq([xv[i]yv[i]],i=1..5)}:
plotl:=plot(xy,style=point,symbol=diamond):
plot2:=plot(f(x),x=0..2.5):
display({ploti,plot2});

Table 37. The Least-Squares Command.
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Figure 41. Least-Squares Fit Plotted With The Original Data.

Table 38 and Figure 42 illustrate the fif command applied to the model y = Ax?
for the data set in Table 36. As obtained previously, the least-squares model is

y=3.1869 x°. Since the two data sets used in this example, xv and yv, have been entered

previously, they can be called without re-entering the data. Having previously invoked the

with(plots): and with(stats): commands, they need not be repeated in this continuation

example either.

Axyﬁt. =fitfleastsquare[[x,y],y
J:=unapply(rhs(xyfit) x);
ploti:=plot(xy,style=point, symbol=diamond):
plot3:=plot(f(x),x=0..2.5):
display({plot1,plot3});

a*x"2,{a}]]([xvyv])

xyfit:=y = 3.1869 x
fi=x > 3.1869 x>

Table 38. Least-Squares y = AX’.
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Figure 42. The Least-Squares Ax? Fit Plotted With The Data.

1. Example 4.1: A Least-Squares Fit

Table 39 and Figure 43 demonstrate how to determine a constant of

proportionality, using the data in Example 3.2.1 of Chapter III. In the Example 3.2.1, the

model, W = .00860 len®, was derived. The next example illustrates the fif command

analytically fitting the model W =k len’ to the same data set.

with(plots): with(stats):Digits:=5:

len:=[14.5,12.5,17.3,14.5,12.6,17.8,14.1,12.6];

wi:=[27,17,41,26,17,49,23,16];

lenwt:={seq([lenfi]wt[i]]i=1..8)}:

lenwtfit: = fitfleastsquare [[x,y] , y = a*x"3,
{a}]] ([lenwt]);

f:=unapply(rhs(lenwifit),x);

plot4: =plot(lenwt,style=point,symbol=diamond):

plot5:=plot(f(x),x=0..18):

display({plot4,plot5});

len = =[14.5, 12.5,17.3, 14.5, 12.6, 17.8, 14.1, 12.6]
wt = [27, 17, 41, 26, 17, 49, 23, 16}

lenwtfit := y = 0.0084365 x°

f=x ->0.0084365 x°

Table 39. Least-Squares W =k len’.




Figure 43. Weight = 0.0084365 *length’.

The least-squares estimate of the proportionality constant in this model is

k = 0.0084365. The graphical solution in Figure 43 shows that the model does capture

the trend of the data, which corresponds to the solution in Chapter IIL

PLOTTING THE RESIDUALS FOR A LEAST-SQUARES FIT

In the previous section you learned how to obtain a least-
squares fit of a model, and you plotted the model’s predictions on the
same graph as the observed data points in order to get a visual indica-
tion of how well the model matches the trend of the data. A powerful
technique for quickly determining where the model breaks down is to
plot the actual deviations or residuals between the observed and predict-
ed values as a function of the independent variable. The deviations
should be randomly distributed and contained in a reasonably small band
that is commensurate with the accuracy required by the model. Any
excessively large residual warrants further investigation of the data
point in question to discover the cause of the large deviation. A pattern
or trend in the residuals indicates that a predictable effect remains to be
modeled, and the nature of the pattern gives clues on how to refine the
model, if a refinement is called for. (Fox, et al., op.cit., page 76).
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This section explains how to use Maple to compute residuals. After fitting a
specified model, the difference between the observed and predicted values can be
calculated by using the array manipulations described in Chapter I. In Example 4.1, the
relationship between the weight of a bass and its length could be reasonably modeled by

the following expression: W = 0.0084365 len’. The residuals are the differences

between the predicted and observed values.

The observed values are stored in the original data wr array, while the predicted
values must be calculated using the formula W = 0.0084365 len°. The residuals are
calculated by subtracting each observed value from each predicted value. To analyze the
results, the residuals are plotted using the graphical methods of Chapter II. Table 40

illustrates the method, and Figure 44 displays a plot of the residuals.

Miibdebdtnbietfuaie

with(plots): with(stats): with(linalg):Digits: =4:
len:=[14.5,12.5,17.3,14.5,12.6,17.8,14.1,12.6]; len :=[14.5, 12.5,17.3,14.5, 12.6, 17.8, 14.1, 12.6]

wt:=[27,17,41,26,17,49,23,16]; wt :=[27, 17, 41, 26, 17, 49, 23, 16]
lenwifit:= fit[leastsquare [[xy] , y = a*¢"3, {a}]] | lenwtfit ==y = 0.008436 x°
([len,wt]); ,
f:=unapply(rhs(lenwtfit),x); f=x > 0.008436 x°
predict:=map(x->f(x),len); predict:=[25.61 16.41 43.50 25.61 16.80 47.38
23.55 16.80]
resid: =matadd(wt,predict, 1,-1); : resids:=[ 1.39 .59 -2.50 .39 201.62-55 -80]

wipred. ={seq([len[i],resid[i]],i=1..8)}:
plot(wipred, style=point, symbol=diamond);

Table 40. Plotting Residuals.
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Figure 44. The Bass Derby Fishing Residuals.

Note that the residuals are randomly distributed and contained in a relatively small band
about zero. There are no outliers, or unusually large residuals, and there appears to be no
pattern in the residuals. Based on these aspects of the plot of the residuals, the model

accurately approximates the data.

C. THE STATISTICS PACKAGE

As will be seen when using the Chebyshev criterion, certain statistical functions
are required to analyze a model. Finding the largest absolute deviation, the sum of the
absolute deviations, and the éverage absolute deviation are a few of thé tasks that are
simplified using Maple’s statistics package.

Recall that the statistics package requires the with(stats): command prior to use of
any statistics commands. Having activated the statistics package, the describe command

is required to access any of the commands listed in Table 41.

60




count covariance kurtosis

mean median mode

moment percentile quantile

quartile range skewness
standarddeviation variance coeflicientofvariation

Table 41.

Commands Available With Describe.

Using the bass derby data set, the commands listed in Table 42 demonstrate finding

a variety of statistical values from the wr data set.

wt.=[27,17,41,26,17,49,23,16], wt:=[2717412617492316]
with(stats):

describe[median](wt): evalf(“); 245
describe[mean](wt); 27
describe[count](wt); 8
describe[range](wt); 16..49
describe[variance](wt): evalf(“); 127.25

Table 42. Example Statistics Commands.

1. The Chebyshev Criterion

As discussed above, the fif command determines the parameters
of a model such that the sum of the squared residuals is minimized.
Other curve-fitting criteria exist although these lead to different optimi-
zation problems. For example, the Chebyshev criterion determines the
parameters of a model such that the largest absolute deviation is mini-
mized. That is, the Chebyshev criterion determines the parameters of
the function type y = f(x) that minimizes the number

Maximum | yj- f(xj)|, j=1,2,...,m Equation 3.
The formulation of a specific problem yields a mathematical program
which is either linear or nonlinear. Denote the largest of the residuals

that result from a Chebyshev fit by cpay . Thus, cpax is as small as
possible if the Chebyshev criterion is used to determine the model

parameters. A bound on ¢y may be obtained using the results of a
least-squares fit as follows:

D < cmax < dpax Equation 4.

61




where D = ((T (d;)° ¥ m )" and dmax is the largest of the residuals d;
resulting when the least-squares criterion is used.... If the difference be-
tween D and dpay is large, and minimizing the largest absolute deviation
is important in a particular application, one may wish to investigate the
Chebyshev criterion further. (See Giordano and Weir, op. cit. , for a
more thorough discussion of these ideas). (Fox, et al., op.cit., pages

80 and 81)

Table 43 presents the commands and outputs for the bounds for the bass fishing

derby model W = 0.0084365 len®, which was fit with the fif command in Chapter IV,

Section A. Maple’s sum command requires a set and will not operate on a list, which

requires the residuals to be re-entered.

with(plots): with(stats): with(linalg): Digits:=5.
len:=[14.5,12.5,17.3,14.5,12.6,17.8,14.1,'12. 6];

wt:=[27,17,41,26,17,49,23,16];
lenwtfit: = fit[leastsquare [[x,y] , y = a*x"3,
{a}]] ([lenwt]);

f:=unapply(rhs(lenwifit),x):

predict:=map(x->f(x),len):

resid:=matadd(wt,predict, 1,-1):

residsum:=sum('(resid[k])"2",'k=1..8));

bigd: =((residsum)/8)"\(.5);

resids: =map(x->abs(x),resid):

Resid: =(resids[1] resids[2], resids[3],resids[4],
resids[5] resids[6], resids[7],resids[8]):

dmarc: =max(Resid),;

len :=[14.5, 12.5,17.3, 14.5, 12,6, 17.8,
14.1, 12.6]

wt :=[27, 17, 41, 26, 17, 49, 23, 16]

lenwtfit :=y = 0.0084365 x°

residsum := 12.173
bigd := 1.2333

dmax :=2.305

Table 43. The Bounds On cpay.

From Table 43, the bounds on cpax are

1.2335 < cmax < 2.305.
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D. AN ILLUSTRATIVE EXAMPLE

In this section the vehicular stopping distance problem investigated in Example
3.2.2 of Chapter III is re-investigated to illustrate the use of the Maple commands
presented thus far in a modeling application. Recall, using proportionality techniques the
model d=1.1v+0.057 v* described the data. The model consists of two submodels:
d; o« v for the reaction distance, dj,, and d, oc v* for the braking distance, djp.

Table 44 presents the commands for Steps 1 and 2. Note, all the data sets have
been previously entered and saved in Example 3.2.2 of Chapter III, so they can be used
here without re-entering the data. In the first step, the submodel d, oc v, uses the data
sets v and dr and fitting a least-squares criterion solves y = 1.1040 x. In the next step, the
residuals are plotted to analyze the fit. There is a trend in both sets of residuals which

indicates that the model should be refined to address this effect. The routine is repeated to
evaluate the second submodel. The submodel dy, o« v* uses the data sets v and db and the
leé,st-'squares criterion to determine the model d = 0.054209 v2. Thus, the least-squares

fit produces the quadraticAsolution d =1.1040 v + 0.054209 v°. Figures 45 and 46 display

the residual plots. Table 45 illustrates the commands used to determine the bounds

for cmax.
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with(stats) :with(linalg) :with(plots) : Digits: =5:

v:=[20,25,30,35,40,45,50,55,60,65,70,75,80] :

dr:=[22,28,33,39,44,50,55,61,66,72,77,83,88]:
db:=[20,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376] :

vlefit:= fleastsquare [fsy] . y=a*s.{a}]] ([7dr}): evalfC);

J:=unapply(rhs(vdrfit) x):

predict:=evalf(map(x->f(x),v)):

resid:=evalf(matadd(dr,predict, 1,-1)):

vpred.={seq([v[i] resid[i]],i=1..13)}:

Dplot(vpred,style=point, symbol=diamond);

dbv2fit: = fit[leastsquare [[x,y] , y = a*x*2, {a}]]([v,db]): evalf( ")

S =unapply(rhs(dbv2fit),x):

predict: =evalf(map(x->f(x),v)):

resid: =evalf(matadd(db,predict, 1,-1)):

vpred:={seq([v[i] resid[i]]i=1.13)}:

plot(vpred, style=point, symbol=diamond);

y=1.1040 x

y = 0.054209 x°

Table 44. The Vehicular Stopping Distance Residuals.

Figure 45. The Reaction Residuals, y = 1.1040 x.
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Figure 46. The Braking Residuals, y = 0.054209 .

residsum:=sum("(resid[k])"2" 'k=1..13"):

bigd:=((residsum)/13)’(.5); o bigd := 14.203

resids: =map(x->abs(x),resid):

Resid:=(resids[1],resids[2] resids[3],
resids[4],resids[5],resids[6],
resids(7] resids[8],resids[9],
resids{10],resids[11],resids[12],
resids[13]):

dmax:=max(Resid); dmax = 29.06

Table 45. The Bounds On cpay.

Both the residual plots show a trend which indicates that one or both of the
submodels are not taking into account factors or relationships affecting the dependent
variable. Further investigation reveals that the submodel for braking distance is also |
inaccurate at high speeds (see Giordano and Weir, op.cit., page 113). From Table 45, the

bounds for ¢ pax are:

14203 < Cmax < 29.06. Equation 6.
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V. EMPIRICAL MODEL CONSTRUCTION

In previous chapters we assumed the modeler has developed a
model relating the variables under consideration and explain, in some
sense, the observed behavior. If collected data then corroborate the
reasonableness of the assumptions underlying the hypothesized
relationships, the parameters of the model can be chosen that ‘best fit’
the model type to the collected data according to some criterion (such
as least-squares or the Chebyshev criterion).

In many practical cases the modeler is unable to construct a
tractable model form that satisfactorily explains the behavior. Neverthe-
less, if it is necessary to predict the behavior, the modeler may conduct
experiments... to investigate the behavior of the dependent variable(s)
for selected values of the independent variable(s) within some range of
interest. In essence the modeler desires to construct an empirical model
based on the collected data. In this situation the modeler is strongly
influenced by the data that have been carefully collected and analyzed,
so he or she seeks a curve that captures the trend of the data in order to
predict between the collected data points.

To contrast explicative and empirical models, consider the data
shown in Figure 47. If the modeler’s assumptions lead to the expecta-
tion of a quadratic explicative model, a parabola would be fit to the data
points, as illustrated in Figure 48. However, if the modeler has no
reason to expect a model of a particular type, a smooth curve may be
passed through the data points to serve as an empirical model, as
illustrated in Figure 49. (Fox, et al., op.cit., page 93)

Figure 47. Random Data.
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Figure 48. A Quadratic Fit.

Figure 49. A Smooth Curve.

This chapter describes the construction of empirical models. While there are many
techniques to assist in model construction, Table 46 presents a logical procedure for

determining an appropriate empirical model.
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1. Examine a scatterplot of the data for trends.
Examine outliers and replace/discard them.

3. . Find a one-term model and, if possible, fit the chosen one-term model, if the fit is
adequate, end.
Otherwise, attempt another one-term model or consider a polynomial model.

5. From a divided difference table, fit a low-order polynomial; if adequate, end.
Otherwise, construct a cubic spline.

Table 46. Empirical Model Process.

First examine if a trend in the data is discernible. If so, begin with the simplest
technique available (a one-term model) and then proceed through the above steps until an
empirical model is developed that satisfies the requirements of the particular application.
As a general rule, we select the simplest model which captures the trend of the data. For a
more detailed discussion of empirical model construction, see Chapter 6 of Giordano and

Weir, op.cit.

A. ONE-TERM MODELS

We commence our study of empirical model building with the
presentation of simple one-term models. These models have several
advantages. One obvious and powerful advantage is their simplicity.
Another is that a one-term model may capture the trend of the data
better than any other empirical model (such as a polynomial). This
feature is particularly important in situations when the modeler intends
to make a prediction by extrapolating for values outside the intervals of
the observations; for instance, when the modeler intends to predict a
future value based on historical information.

When constructing an empirical model, always begin with a
careful analysis of the collected data. Investigate whether the data
suggest the existence of a trend. Are there data points that fail to
follow the trend? If such ‘outliers’ do exist, you may wish to discard
them. Or if they were obtained experimentally, you may choose to
repeat the experiment as a check for a data collection error. (Fox, et al,,

op.cit., page 96)

69




If a trend is observed to exist, the use of one-term models is investigated by
matching of the trend’s concavity using the “Ladder of Transformations.” For a more

detailed discussion of the “Ladder of Transformations,” see Chapter 6 of Giordano and

Weir, op.cit.

1. Example S.1: The Bass Fishing Derby

Consider the Bass Fishing Derby discussed previously in Exam-
ple 3.2.1 in Chapter III. In Example 5.1, the scatterplot of the original
data suggests a trend which is concave up. Thus we select the 2 trans-
formation and plot W vs len’. Since the plot is reasonably linear, we fit
the model analytically (using least-squares) and plot the residuals. Since
there is an evident trend in the residuals, we investigate W vs len’ina
similar manner. The two resulting models are: W =0.13108 len’ and

W = 0.00844 len>. Note that the residuals of W vs len’ are more
random about the origin, indicating that the second model is the better

one. (Fox, et al., op.cit., page 98)

The commands are presented in Tables 47 through 49 and the plots are located in

Figures 50 through 56.

len:=[14.5,12.5,17.25,14.5,12.625,17.75,14.125,12.625]:
wt:=[27,17,41,26,17,49,23,16]:
w:={seq([lenfi]wt[i]]i=1.8)}:
plot(lw,style=point,view={0..20,0..50]);
len2:=map(x->x"2,len):

R2w:= {seq([len2[i]wt[i]],i=1..8)}:
plot(12w,style=point,view=[0..400,0..50]);

Table 47. The Bass Fishing Derby.
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Figure 50. Length vs. Weight.

Figure 51. Length2 vs. Weight.
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with(plots): with(stats): with(linalg): Digits:=35.
len:=[14.5,12.5,17.3,14.5,12.6,17.8,14.1,12.6]:
wt:=[27,17,41,26,17,49,23,16]:
Jitl:=fit[leastsquare[[x,y],y=a*<*2, {a}]]([lenwt]): evalf(");
J:=unapply(rhs(fitl) x):

predict:=map(x->f{x),len):

resid:=matadd(wt,predict, 1,-1):
wipred:={seq([lenfi],resid[i]],i=1.8)}:
plot(wipred,style=point, symbol=diamond);
plot1:=plot(bw,style=point,view=[0..20,0..50],color=>black):
plot2:=plot(f(x),x=0..20):

display({plotl,plot2});

y=0.13108 x>

Table 48. The Bass Fishing Derby.

Figure 52. The Second Order Bass Residuals.
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len3:=map;(x->x’§, lenj.

3w:= {seq([len3[i] wt[i]]i=1.8)}:
plot(13w,style=point,view=[0..5600,0..50]);
Jit2:=fit[leastsquare[[x,y],y=a*x"3, {a}]]([lenwt]):evalf(");
S2:=unapply(rhs(fit2),x):

predict2:=map(x->f2(x),len):
resid2:=matadd(wt,predict2,1,-1):

wipred2:={seq([lenfi] resid2[i]],i=1..8)}:
plot(wipred?2,style=point, symbol=diamond);

plot3:=plot( 0084365*x"3,x=0..20):

display({ploti,plot3});

v = 0.0084365 x°

Table 49. The Bass Fishing Derby.
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Figure 54. Length® vs. Weight.

Figure 55. The Third Order Bass Residuals.
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Figure 56. The Graph Of y = 0.0084365 x° Superimposed Over The Original Data.

Figure 52 displays the residuals of the W vs len” model. The residuals are in three

clusters and show an increasing trend. Figure 55 displays the W vs len® model, and more

randomness of the residuals is displayed in this graph than in Figure 52. As a result, the

W vs len® model is selected as the more accurate model in capturing the data.

B. FITTING AN N-1 ORDER POLYNOMIAL TO N DATA POINTS

Because of the inherent simplicity, one-term models facilitate
model analysis including sensitivity analysis, optimization, estimation of
rates of change and area under a curve applications, and so forth. How-
ever, precisely because of this simplicity, one-term models are not likely
to capture the trend of an arbitrary data set. In many cases models with
more than one term must be considered. The remainder of this chapter
considers one type of multiterm model; namely, the polynomial. Since
polynomials are easy to integrate and differentiate, they are especially

popular to use.... Consider passing a quadratic Py(x) =a+bx+c x*
through the following data points in Table 50.
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x |t [ 273
y | 5 [8]2

Table 50. Data Points For A Polynomial.

Requiring that P, (x; ) =y; yields the following system of equations in
Table 51.

at 1b+ 1 ¢ = 5
at 2b+ 2°¢ = 8
a+ 3b+ 32, =25

Table 51. The System Of Equations.

To solve the above system conveniently using Maple, we consider the
linear system in the form of the matrix equation AX = B, which has the
solution X = A™! B, provided that A is invertible. Thus, the above
system can be written in matrix form as

1 11 a 5 a
1 2 4fejb|=|8 | whereX=|b Equation 7.
1 3 9| |c 25 c
and, since the coefficient matrix is invertible, the solution is
a 3 -3 1 5 16
bl{=|-25 4 -15|¢| 8 |=|-18| Equation8.
c 05 -1 05 25 7

or P(x)=16-18x+ 7%,

In general, the requirement that an n-1 degree polynomial pass
through n distinct data points... yields a system of n linear algebraic
equations in n unknowns. It is important to realize that large systems
of equations can be difficult to solve with great accuracy, and small
round-off errors in computer arithmetic can cause large oscillations to
occur due to the presence of the higher-order terms. (Fox, et al.,
op.cit., pages 107 and 108)
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The process of solving for a, b and ¢ by inverting A and multiplying it by B is
computed by Maple in one step with the gaussjord command. Additionally, an in-depth
discussion of the causes and effects of these oscillations is presented in Chapter 6 of

Giordano and Weir, op.cit pages 184 through 186.

1. Example5.2: An N-1 Degree Polynomial
The Maple linear algebra package is capable of in-depth matrix manipulations.

Specifically, Maple quickly solves the type of problem discussed above with one

command. Reviewing that earlier example:

olbi=|8 Equation 9.
1 3 9| |c| |25

with(linalg):
B:=array([[1,1,1,5],{1,2,4,8],[1,3,9,25]]); 1 1 1 5
B={1 2 4 8:|
1 3 9 25
gaussjord(B); 1 0 0 16
0 1 0O -18:|
6 0 1 7

Table 52. Gauss-Jordan Elimination.

providing the coefficients for the solution of P2(x) = 16 - 18x + 7x>. The graphical

presentation demonstrates the fit of the solution, presented in Table 53 and Figure 57.
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with(linalg):

x:=[1,2,3]:

y:=[5,825]:

xy:={seq([x[i].y[i]],i=1..3)}:

with(plots):
plotl:=plot(xy,style=point,symbol=circle):
plot2:=plot(16-18*z+7%z"2,z=0..5):
display({ploti,plot2});

Table 53. Plotting A Quadratic Curve.

Figure 57. The Quadratic Curve Passes Through The Points.

C. POLYNOMIAL SMOOTHING

Smoothing with low-order polynomials is an attempt to retain
the advantages of polynomials as empirical models while at the same
time reducing the tendencies of higher-order polynomials to snake and
oscillate. The idea of smoothing is illustrated graphically in Figure 58.
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9th Order Polynomial

Figure 58. Polynomial Smoothing.

Rather than forcing a polynomial to pass through all the data
points, a low-order polynomial is chosen and fit to the data. This
choice normally results in a situation where the number of data points
exceeds the number of constants necessary to determine the polynomial.
Smoothing with polynomials requires two decisions:

o Is a low-order polynomial appropﬁate? If so, what should the

order be?
. What are the parameters of the model according to some

criterion of ‘best fit,” such as the least-squares criterion?

(Fox, et al,, op.cit., page 114)

1. Example 5.3: Fitting A Sth-Order Polynomial Using Least-Squares
Given a set of data points, see Table 54, an analyst decides to attempt to fit a curve

to the data using a high order polynomial. Table 55 displays the commands required and

Figure 59 displays the polynomial curve superimposed on the data.

X 1

2

3

4

5

6

y | 305

266

135

-16

125

1230

Table 54. The Data Points For Example 5.3.

79




with(stats) :with(plots):

xdata:=[1,2,3,4,5,6]:

ydata:=[305,266,135,-16,125,1230]:

xyfit:=fit[leastsquare[[x,y],y=a*x"5+b*x4+c
x"3+d*x"2+e*x+g {a,b,c,deg}]]([xdata,
ydataj);

J-=unapply(rhs(xyfiy) x):

xy:={seq([xdatafi]ydatafi]]i=1..6)}:

ploti:=plot(xy,style=point,symbol=diamond):

plot2:=plot(f(x),x=0..6):

display({ploti plot2});

xyﬁt:=y=x5 S5x7 3% 47 +5
x+300

Table 55. The Commands For Example 5.3.

Figure 59. The Plot For Example 5.3.

D. DIVIDED DIFFERENCE TABLES AND CUBIC SPLINES

Thus far in this chapter, methods for approximating trends in data have been

explored using one-term models when appropriate otherwise using polynomial models.

When deciding to use a polynomial model, two questions must be answered: is a

polynomial appropriate and what order polynomial would best describe the data? Section

6.3 of Giordano and Weir, op.cit., offers a detailed discussion of how to answer these
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questions using the derivative and divided difference tables. This chapter describes the
Maple commands required to develop a divided difference table and the technique of a

solution using the cubic spline.

1. The Divided Difference Table

The divided difference table is composed of two columns of data and successive
columns of divided differences which approximate derivatives. A few new functions are
introduced in this section: the for, if, proc, save and read commands. The for statement is
a repetition statement which executes a command a specific number of times. The if
statement is a conditional statement which executes a command when a condition is met.
Proc is the command to create a procedure. A procedure is an expression or group of
expressions which are assigned to a name, in this case, newproc. The procedure will
evaluate a parameter or set of parameters as defined in the command statement, inside the
parenthesis immediately following proc. The local command designates local variables
which will have no value outside of the procedure. Once a name, newproc, has been
assigned a procedure, then if may be invoked by calling newproc(arguments), where the

procedure will be applied to specific arguments. Table 56 demonstrates applications of

all of these commands and their results. The first for loop prints the integers from 1 to 3.

The second for loop creates.a matrix with values 2,4,6, and 8. The if statement evaluates
if the first value, 2 is less than the third value, 6, since this is true, it replaces the fourth
value, 8, with the value 17. The first procedure will return two times the square root of
the argument of interest. The second procedure will divide the product of two arguments

by the sum of the same two arguments. The proc commands is presented in two different
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formats, both are correct. Once a procedure has been created it can be saved and used at

some later point by reading the saved procedure. The save command will save the

procedure, while the read command can be used at any later time to use the procedure

without re-typing the procedure.

-‘ Jor j from 1 to 3 do print(j) od;

with(linalg):
amatrix:=matrix(1,4);

evalm(amatrix);

if amatrix(1, 1 ]<amatrix[1,3] then
amatrix[1,4]:=17: fi: evalm(amatrix);

newprocl:=proc(x)

local wosqrt;

twosqrt:=2*\(.3);

RETURN (evalf(twosqrt))
end;
newprocl(14);
newprocl(121);
newproc2:=proc(x,y) local pos;
pos:= x*y/(x+y); RETURN(pos) end;

newproc2(.5,2);
newproc2(3,6);
save newproc2, "TestProcedurel.m’:

read("TestProcedurel.m’);

for j from 1 to 4 do amatrix[1,j]:=2%: od:

amatrix:= array(1..1,1.4,[ ])

[2 4 6 §
[2 4 6 17]

newprocl := proc(x) local twosqrt; twosqrt:= |.
2*x" 5; RETURN(evalf(twosqrt)) end

7.483314774
22
newproc2 := proc(x,y) local pos;
pos = x*y/(x+y); RETURN(pos) end

04
2

Table 56. The For, If, Proc, Save And Read Commands.

a

Example 5.4.1: Generating A Divided Difference Table

Using a hypothetical set of data from Giordano and Weir, op.cit., page

191, Table 57 demonstrates the creation of a divided difference table using Maple

82




commands in a step by step format. Notice in Table 57 the evalm(xym); command
displays the matrix. The command has been used three times to demonstrate the evolution
of the matrix, the three matrices have been collocated in Figure 60 for ease of
presentation. The first matrix is the empty xym matrix while the second matrix is the xym

matrix with the xdata and j)data. The third matrix is the finished divided difference table.

with(stats): with(linalg):

xdata:=[0,2,4,6,8]; ' xdata:=[0,2,4,6, 8]
ydata:=[0,4,16,36,64]; ydata:=[ 0, 4, 16, 36, 64 ]
lengthdata: =describe[count](ydata); lengthdata:=5
xym:=matrix(3,5); ' xym:= array(1..5,1..5,[ 1)

for j from 1 to 5 do for kfrom 1to 5 do
xym[j,k]:=0: od: od:
evalm(xym);
forj from I to 5 do xymfj,1]:=xdatafj]: od:
for j from 1 to 5 do xymfj,2]:=ydatafj]: od:
evalm(xym);
for j from 2 to 4 do for k from j to 5 do
xym[k,j+1]:=(cym[k j]-xym[k-1j])/
(oym{k, 1]-xym[k-(j-1),1]):
if abs(xym{k,j+1])<10"(-5) then
xym[k,j+1]:=0
fi: od: od:
evalm(xym),

Table 57. A Divided Difference Table.

0 06 0 0 O 0 0 0 0 O ¢ 0 0 0 O
0 0 0 0 0 2 4 0 0 O 2 4 2. 00
0 0 0 0 O 4 16 0 0 O 4 16 6 1 0
0 0 0 00 6 36 0 0 O 6 36 10 1 O
10 0 0 0 O] 8 64 0 0 O 8 64 14 1 O

Figure 60. The Evolution Of The Divided Difference Table.
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Having examined each étep of the creation of the divided difference table
in Table 57, Table 58 demonstrates the divided difference table procedure, ddproc, which
will be applied to the previous example and to Example 5.4.2. Table 59 presents the

final solution of the previous example using the ddproc procedure.

ddproc:=proc(x,y) local len, xym, j, k;
len:=describe[count](3):
xym:=matrix(len,len):
Jor j from 1 to len do for k from 1 to len do xym[j,k]:=0: od:od:
Jor j from 1 to len do xym{j,1]:=x[j]:od: for j from 1 to len do xym[j,2]:=y[j]:od:
for j from 2 to (len-1) do for k from j to len do
xym[k,j+ 1]:=(gym[kj]-xym[k-1,j])/(cym[k, 1 ]-xym[k-(-1), 1]):
if abs(xym/[k,j+ 1])<10N-5) then xym[k j+1]:=0: fi: od: od:
Digits:=3:
RETURN (evalf(evalm(xym)))
end:

Table 58. The Divided Difference Table Procedure.

with(stats): with(linalg):
xdata:=[0,2,4,6,8]:
ydata:=[0,4,16,36,64]:

ddproc(xdata,ydata); 0 0 0 0 0
: 2 2 0o 0

4 16 6 1 0

6 36 10 1 0

8 6 4 14 1 0

Table 59. An Application Of The Divided Difference Table Procedure.

b. Example 5.4.2: Vehicular Stopping Distance

The divided difference table assists in determining what order polynomial
should be used to approximate a set of data. This can be demonstrated using the vehicular
stopping distance example, previously solved using the quadratic d = 1.104 v + 0.0541 v

in Section D of Chapter IV. Table 60 and Figure 61 display this example.
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Tvith(stats): with-(linalg):
dx:= [20,25,30,35,40,45,50,55,60,65,70,75,80] :
dy:= [42,56,73.5,91.5,116,142.5,173,209.5,248,292.5,343,401,464]:

ddproc(dx,dy);

==

Table 60. The Commands For The Divided Difference Table.

20
25
30
35
40
45
50
55
60
65
70
75
80

42
56
735
915
116
143
173
210
248
292
343
401
464

0
28
35
3.6
49
53
6.1
7.3
7.7
89

101
11.6
12.6

0
0

.07
01
13-
04
.08
12
04
12
12
15
10

0
0
-.004
.008
—-.006
0027
0027
-.005
.005
0
002
-.003

o O ©

0
0006
—.0007
100043
0
—.0004
00053
00027
0001
~.00027

o O O O

0
—.000052
.000045
—.000017
—.000016
000037
~.000032
.000015
~.000015

©C O © O O © © © © © © O O

O O ©O © O ©O O © © O O O O

S O O O O © O © O O o © ©

O O O © © © © © © © © © ©

O O O O O O © O O O O O O

© O O O O O © O ©o oo © © ©

Figure 61. The Vehicular Stopping Distance Divided Difference Table.

From Figure 61, all of the divided differences above thé first divided

difference are significantly small in comparison to the data. However, the third, four and

fifth divided differences all demonstrate a fluctuation between positive and negative

values, which suggests measurement errors or other errors which would not be desired in

a high order polynomial. This eliminates all possibilities but the quadratic polynomial to
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approximate the data. Table 61 demonstrates the Maple solution of the quadratic using

the least-squares criterion, for an in-depth discussion of this example see Giordano and

Weir, op.cit., page 195-196.

with(stats): with(linalg):
vdfit:= fit[leastsquare [[x,y], y = a*x"2+b*c+c,
{abcl]] ([axdy));

J:=unapply(rhs(vdfiy),x):

predict: =evalf(map(x->f(x),dx)):

resid:=evalf(matadd(dy,predict, 1,-1)):

residsum:=sum('(resid[k])"2','"k=1..13):

bigd:=((residsum)/13)"(.3);

resids:=(abs(resid[1]),abs(resid[2]),abs(resid[3]),
abs(resid[4]),abs(resid[5]),abs(resid[6]),
abs(resid[7]),abs(resid[8]), abs(resid[9]),

abs(residf13])):
dmax:=max(resids);

abs(resid[10]),abs(resid[11]),abs(resid[12]), -

vdfit:=y = .0886 x° - 1.970x + 50.06

bigd:= 2.6866

" dmax =4.5660

Table 61. The Vehicular Stopping Distance Bounds For cmpay.

From Table 61, d = 50.06 - 1.970 v + 0.0886 v approximates the data

much better than the previous quadratic d = 1.104 v + 0.0542 v* as shown by the bounds

for cmax. Below the bounds for ¢ max, as computed using the original quadratic equation,

followed by the bounds for ¢ max, computed using the new quadratic equation,

demonstrate a definitive improvement using the new equation:

14203 < Cmax <

29.06 Equation 10.

2.6866 < Cmax < 4.5660. Equation 11.
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By computing the divided difference table, the order of the polynomial is
accurately predicted. Using the least-squdres technique in Chapter IV, the polynomial is
determined and the residuals demonstrate the improvement over the techniques

demonstrated in Chapter IV.

2. The Cubic Spline
In this section we introduce cubic spline interpolation as an

alternative method for constructing empirical models. By using dif-
ferent cubic polynomials between successive pairs of data points and by
connecting the cubics together in a smooth fashion, we can capture the
trend of the data, regardless of the underlying relationships. Simul-
taneously we will reduce the tendency towards oscillation and the sen-
sitivity of the coefficients to changes in the data. (Fox, et al., op.cit.,
pages 131 and 132)

Maple has a spline command, which may be used only after issuing the command
readlib(spline): which activates the spline command. By reviewing the Example 5.2 in
Section B, the cubic spline method can be applied to the data with the commands
presented in Table 62, with output in Table 63 and Figure 62. The spline command
produces the group of polynomials which define the curve. The command

s:=unapply(“,x); assigns to s the value of the curve at a particular point, which is

displayed with two arbitrary points: s(1.4859) and s(2.3).

87




readlib(spline):
dx:=[123]:dy:=[5,8,25]:
spline(dx,dy,x,cubic);

s:=unapply(“,x);

dxy:={seq([dx[i].dy[i]],i=1..3)};

plot1:=plot(s(x),x=0..4):
plot2:=plot(dxy,style=point,
symbol=box):
with(plots):
display({ploti,plot2});

5(1.4859);
s(2.3);

{

2+10x —10.5x% + 35x° x<2

58— 74x +315x* — 35x° otherwise

$:’=s—> piecewise .
(x <2, 2+10x-105x% + 3.5x,3 58— 74x+315x* — 3.5x3)

dxy = {[1, 5], [2, 8], [3, 251}

5.16
11.85

Table 62. The Spline Command.

Figure 62. The Spl
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The solution provides the polynomials which describe each segment of the curve. By

using the spline procedure, the value of the spline, s, can be determined at any point on

the curve defined by Table 63.

Si(x) =

2+10x - 10.5x" +3.5x

Sy(x) = 58 -74x + 31.5%% - 3.5%°

a

Example 5.4.3: The Cost Of The Postage Stamp

Table 63. The Curves Of The Spline.

Between 1917 and 1996 the cost of the postage stamp has changed on over

a dozen occasions. An analyst would like to be able to model the cost of the stamp and

more importantly predict its future cost. By using the cubic spline, this section will

present the modeling process to answer a real-world question. Table 64 presents the cost

of the postage stamp at the beginning of every decade since 1920. Table 65 and

Figure 63 display the commands and the results.

year

1920

1930

1940

1950

1960

1970

1980

1990

cost

2

2

3

3

4

6

15

25

Table 64. The Postage Stamp Data Points.
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cost:=[2,2,3,3,4,6,15,25]:
readlib(spline):

spline(year,cost,x,cubic):

s: =unqpply( "x):

ye:={seq([year(i] cost[i]]i=1.8)}:
plotl:=plot(s(x),x=1920..2010):
plot2:=plot(yc,style=point, symbol=boxy):
with(plots):

display({plotl,plot2});

year:=[1920,1930,1940,1950,1960,1970,1980,1990]:

Table 65. The Commands To Determine The Cost Of A Postage Stamp.

1920

1940 1960 1980

2000

Figure 63. The Cost Of A Postage Stamp From 1920 To 2010.
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Figure 63 displays the spline curve superimposed over the original data
points. Estimations of the value of the function can be taken from the gra'ph or by using
the function s as shown in Table 66. Notice that by the year 2001 the spline approximates
the cost of the postage stamp to be $0.36, a reasonable estimation. Note, the cubic spline
is dependent on the data points, approximations outside of the endpoints can act

erratically. An approximation of the cost of the postage stamp in 1871 is -$0.39, the

government would pay each of us to use the mail system, an unlikely event.

s(1997); 32
$(2001); 36
$(2002); 37
5(2050); o 132
s(1871); -39

Table 66. The Approximation Of The Cost Of A Postage Stamp.
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APPENDIX. MAPLE COMMANDS

A complete list of Maple commands used or described in this manuscript.

Data Entry Commands
= The assignment operator, used as a command
<lhs> ;= <rhs>; where the lhs is the name and the rhs is the
expression whose value the lhs assumes.
ie) a:=17, a:=17
a=x"2; a=x’
x:=8; x:=8
a; a:=64
statement separator, suppresses output
; statement separator, displays output on screen
[] list notation
ie) a:=[2,5,19,4]; a:=[2,5,19,4]
b:=a[2]; b:=5
{ } set notation, orders data
ie) a:={2,2,5,19,4} a:={2,4,5,19}
$ operator for forming an expression sequence
ie) c=1%1=1.3 c=1,23
c=12’%1’=1.3 c=1,49
importdata reads statistical data from a file
importdata(filename,# of columns)
ie) importdata(bass,2)  reads bass file of 2 columns
of data
readdata reads raw data from a file
readdata(filename, # of columns)
ie) readdata(bass, 2) reads bass file of 2 columns
of data



Package Control Commands

Digits

evalf (),

with( ):

Plotting Commands

plot(f(x), hr);

plot(data);

seq

textplot

display

Defines the number of digits in the floats, how many
significant digits will be used and presented in calculations.

Default is ten digits.
ie) Digits:=4; Digits:=4

evalf(1/2); 5000

evaluates using floating-point arithmetic, converts
fractional solutions to decimal solutions.
ie)  evalf(1/2); .5000000000

defines the names of functions from a library package
indicated inside the brackets.

ie)  with(linalg): linalg package
with(plots): plots package
with(stats): stats package

plots a function, f{x), over a horizontal range, hr
ie) plot(sin(x),x=0..8);

plots data points _
ie)  lenwt:=[17,25,12,18,10,15]:
plot(lenwt,style=point);

assigns independent x and y coordinates to a sequence of
pairs, to assist in plotting data points
ie) x:=[1,2,3,4,5]:
y:=[8,5,2,1,0]:
xy-={seq([x[i].y[i]}.i =1..5)};
plot(xy,style=point);

- adds text into a plot

ie) with(plots):
t:=textplot(2,5, Place this text at 2,5"):
p:=plot(lenwt,style=point);
display({t,p});

displays a list of plot structures

ie) pl:=plot(lenwt,style=point):
p2:= plot(sin(x),x=0..8):
display({p1,p2});
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Plotting Options

scaling=
axes=
coords=
numpoints=
resolution=
color=
xtickmarks=
style=
discont=
title=
thickness=
linestyle=
symbol=
font=
titlefont=
axesfont=
labelfont=
view=

CONSTRAINED or UNCONSTRAINED
FRAME, BOXED, NORMAL, or NONE.
polar

minimum number of points to be generated

n

specify the color of the curves

n

POINT, LINE or PATCH

]

“the title’

0,1,2,or3.

0,1,2,3,4,5,6,7,8,9

BOX, CROSS, CIRCLE, POINT, or DIAMOND.
Font for text objects in the plot

Font for the title of the plot

Font for the labels on the tick marks of the axes
Font for the labels on the axes of the plot
[xmin..xmax,ymin..ymax]

Statistics/Linear Algebra

matadd

array

matrix addition, adds a multiple of one matrix to a

multiple of another matrix

ie) a:=matrix(3,2,[1,3,5,2,6,18]):
b:=matrix(3,2,[1,2,3,4,5,6]):

5 12
matadd(a,b,2,3); 16 16
27 54

creates an array
ie) array(1..4,[1,4,2,2]); [1422]
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describe

evalm( )

fit(leastsquare)

gaussjord

A subpackage of the statistics package, required
when using any of the following commands;

coefficientofvariation count
countmissing variance
covariance decile
geometricmean range
harmonicmean. kurtosis
linearcorrelation mode
standarddeviation mean
quadraticmean median
meandeviation moment
percentile skewness
quartile quantile

ie) a:=[4,45,229]:
describe[count](a); 3
describe[median](a); 45
describe[kurtosis](a); 3/2

evaluates a matrix operation
ie) a:=matrix(3,2,[1,3,5,2,6,18]):
b:=matrix(3,2,[1,2,3,4,5,6]):

3 7
evalm(a+2*b); 11 10
16 30

fits a curve to data using the least-square method
ie) xdata:=[1,2,3]:
ydata:=[4,45,229]:

xyfit:=fit[leastsquare[[x,y], y = a*x"2+b*x+c

{a,b,c}]] ([xdata,ydata]);

evalf("); y=71.5%*173.5x+106

conducts Gauss-Jordan elimination on a matrix
ie) a:=matrix(3,2,[1,3,5,2,6,18]):

1 0
gaussjord(a); 0 1
00
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inverse computes the inverse of a matrix
ie) a:=matrix(2,2,[1,3,5,2]):

) -15 23
inverse(a); 38 —08
map changes a variable into a function
ie) xdata:=[1,2,3]:
a:=map(x->x"2,xdata); a={1,4,9]
matrix creates a two dimensional array

1 3
ie)  a=matrix(2,2,[1,3,5,2]); a:=[5 2]
multiply matrix-matrix multiplication
ie) a:=matrix(2,2,[1,3,5,2]):
b:=matrix(3,2,[1,2,3,4,5,6]):

11 7
multiply(b,a) - 23 17
A 35 27
op extracts operands from an expression
ie) a:=[8,32,2]:
op(2,a); 32
readlib( ) read a library file of a specified name

ie) readlib(spline):

scalarmul multiply a vector by an expression
ie) a:=[8,32,2]:
b:=scalarmul(a,2); [16 64 4]

spline  computes a natural spline
ie) a=[1,2,4]:
b:=[17,4,44]:

spline(a,b,cubic);  If(x<2, 30-2x-16.5x*+ 5.5x,
96-101x + 33x°-2.75%°)

subsop substitutes operands into an expression
ie) a:=[8,32,2]:
subsop(2=4,a); [8,4,2]
sum calculates the sum of an expression

ie) a:=[4,45,229]:
sum(‘afk]’,’k=1..3%); 278
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unapply returns an operator from an expression, assists in evaluating
a least-squares fit following the fit command
ie) xdata:=[1,2,3]:
ydata:=[4,45,229]:
xyfit:=fit[leastsquare[[x,y], y = a*x"2+b*x+c,
{a,b,c}]] ([xdata,ydata]):
f=unapply(rhs(xyfit),x):
f(1.8); 25.36

Conditional and Repetitive Statements

for a repetitive statement which will carry out a command while
some condition is met
ie)  totalK:=0:
for K from 1 by 6 to 30 do
totalK:=totalK + K:
od:
totalK; 65
if a conditional statement which carries out a command when
a condition is met
ie) soln:=0:
xdata:=3:
ydata:=5:
if xdata < ydata
then soln:=xdata*ydata:
else soln:=xdata/ydata:
fi; 15
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Algebraic Operations And Functions

atb
iquo(a,b)
a-b
irem(a,b)
a*b
isqrt(n)
a/b
a’b
a**b
sighum(n)
n! :
abs(n)
min(a,b)
max(a,b)
abs
argument
binomial
ceil

€xp
factorial
floor

In

log
logl0
max, min
RootOf
round
sqrt
trunc

addition

quotient

subtraction

remainder

multiplication

square root

division

exponentiation

exponentiation

sign of a number

factorial

absolute value

minimum

maximum

absolute value of real or complex argument
argument of a complex number or expression
binomial coefficients: binomial(n,r) = n!/(r!*(n-1)!)
ceil(x) = smallest integer greater than or equal to x
the exponential function: exp(x) = sum(x"V/i!,i=0..infinity)
the factorial function factorial(n) = n!

floor(x) = greatest integer less than or equal to x
natural logarithm (logarithm with base E = 2.71828...)
logarithm to arbitrary base '

log to the base 10

maximum/minimum of a list of real values

function for expressing roots of algebraic expressions
round(x) = nearest integer to x (round(.5) = 1)
square root

trunc(x) = nearest integer from x in the direction of 0
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